REGULAR REFLECTION OF PLANE DETONATION WAVES FROM AN ELASTIC HALF-SPACE
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Abstract: An effective method for the approximate solution of the Eq.
[1]} for the intensity of a reflected shock wave in the case of oblique
incidence of a detonation wave on an elastic half-space is described;
the elastic half-space is described by a certain specific form of the
equation of state. Formulas relating the front and particle velocities
behind the transmitted wave front to physical parameters are derived.
Values of the wave intensity and other quantities determined with the
aid of a Ural-2 computer are cited.

The author of [1,2] investigated the regular reflection of shock
waves from the boundary between two bodies. In the present paper we
solve the analogous problem in the case of oblique incidence of a
detonation wave on an elastic half-space. The detonation wave
deforms the elastic half-space, which assumes the position OKy
(Fig. 1) forming the angle B to the initial direction KO of the half-
space boundary. We assume that the acoustic stiffness of the half-
space is larger than the acoustic stiffness of the explosive, In this
case, both reflected wave 2 and transmitted wave 3 are shock waves
[3}. Let us denote the velocities of propagation of the detonation,
reflected. and transmitted waves by Uij(i = 1, 2, 3), respectively;
let the pressure be p; and let the density be pi(i=0,1,2, 3, 4.
The quantities Uy, @&y, p,y, and pyaregiven. We determine the
intensities of waves 2 and 3, their Velocities of propagation, and
the angles &,, @3, and B, The parameters are constant within each
of the domains a, b, ¢, d, and e. In domains a and e the medium
is stationary, i.e., uy; =uy = 0. The basic equations of the problem
express the conditions at the wave fronts and the dynamic and
kinematic relationships.

At the detonation wave front
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where a and k are the speed of sound and the adiabatic exponent of the
products of the explosion.
At the reflected wave front
(g — Ugy) COS Oy 1 (Ugy — Usy) sinay = u,
U + upx cos oy -+ uyy sino, = U,
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At the refracted wave front

uz = u’ (ps, py), Uy = U’ (ps, Py).

Analytic expressions for the functions U'(p,, ps) and u'(py. pg) are
derived below. To close the system of equations we write out the
self-evident kinematic relations

Upx == Uy COSQy, Uy = — uy sina,,

Uge = Ug COS Uy, Uy = — Ug Sinay,
Uy U, Us  usccosB—usysinB
.

sina;  sinds  sindg sin 3
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and the dynamic relations

P2 = P3, Pg = Pa-

Equations (1) express the absolute translational velocity ofthe point O.

Let us find the functions u* and U" in the case in which the
elastic medium has an equation of state of the form

p=4,[Vy/ V)" —1] (V=1/p; 4;, v= const).

We assume that the pressure p is much larger than the pressure
ps- This equation affords a good description of the behavior of
metals under pressures on the order of 100 000 atm [5].

Assuming that the process is adiabatic, we can write

dE = — pdV,

where E is the internal energy per unit mass of the medium.
Integrating, we obtain
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or recalling that
Va=1/ps, Va==1/ps ps=ps,

By — Ey— Pt — A1y (ps — pa)
pspa (Y — 1)
Since [3]
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so that u' and U' can be written as
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Expressing all the known quantities in terms of & = py /py, we
obtain

Uy/ Uy =sinag,/sino; = f (u),
Uy / Uy = sinay/sina, = n (),
Uy — sin?oy [uy -+ uf (W)]»
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where
n @) = U (p, /2007 [y + 1) + 240yp,70F,
F@=CU— (B — 408", 4 = u2Q?cosq, sin® a;,

B = u,2Q  cos?ay, C = Q71 (U; — uy sin’ay),
Q = (U; — uy sin? o)? 4 u,? cos? qq sin% g, ,
The intensity g of the reflected shock wave cannow be determined
[1] fromn the equations
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Table 1

[ 9 s -5 oy 103 (U /U,
0.17 1 1.82 | 0.12 1 0.16 | 0.83 | 0.69
0.35 14,81 10.2510.31 | 0.8 | 0.72
0.52 1 1.79 | 0.40 | 0.47 | 0.76 | 0.78
0.66 1 1.78 | 0.54 | 0.59 | 0.71 | 0.84
0.70 | 1.78 { 0.58 ] 0.62 | 0.70 | 0.85
0.73 1 1.79 | 0.62 | 0.65 | 0.68 | 0.87
0.77 1 1.79 | 0.67 | 0.68 | 0.867 | 0.89
0.80 ] 4.80 | 0.72 ] 0.70 | 0.66 | 0.92
0.8411.81]0,77 1 0.73 1 0.65 | 0.94
0.87 1 1.8410.84|0.76 | 0.64 | 0.97
0.9111.8910.9210.79 | 0.84 | 1.01

Table 2
@ P oz %y B U/ U
0.17 | 1.43 | 0.11 1 0.20 | 0.15 | 0.61
0.35 | 1.44 1 0.22 1 0.39 | 0.15 | 0.64
0.52 11.45 1 0.35 | 0.59 | 0.13 | 0.6Y
0.66 | 1.46 1 0.48 | 0.76 | 0.12 | 0.78
0.70 | 1.47 | 0.52 | 0.81 | 0.12 | 0.77
0,73 | 1.48 { 0.56 | 0.85 | 0.114 | 0.79
0.77 1 1.49 | 0.60 | 0.90 | 0.11 | 0.81
0.80 1 1.51 | 0.65 { 0.95 | 0.40 | 0.84
0.84 11,53 10.70 | 1.00 | 0.40 | 0.86
0.87 | 1.57 | 0.75 | 1.06 | 0.09 | 0.89
0.91 11.6210.83]1.12]0.08| 0.93

Calculations on the basis of (3) show that the first approximation
already yields results which agree with the data of [3]. In the case
of an absclutely rigid barrier ¢ = 0 and

Bo="Ya k1[5 - 1 -+ (1742 4 2 - 1)),

We used the above method to calculate the guantities i, o, ,

g, B, Uy/Uy, Us/Uy, and pg/py on a Ural-2 computer for two
cases:

1) A; =4.41 X 102 N/m?% p, =7.81X 10° kg/mgg

2) A; =2.00X 10" N/m%p, =2.70 X 10° kg/m®,

The quantities pg, Uy, k, and ¥ were setequalto p, 1.30-10° kg/
m?, U;=6020 m/sec, k=3, andy= 4. We need go no further thanthree ap-
proximations to obtain the intensity g ofthe reflected shock wave within
three places. Theresults for the above cases appear in Tables 1 and 2,

Within the required error bracket we have

090U/ U091, 0.083 us/ Uy < 0.087,

P 110
04
in the first case and
142U/ U 1S,

045 Cua U1 << OMT, 146 < pg/py<C 148

in the second,

Our data indicate that the intensity of the reflected shock wave
diminishes with decreasing density of the elastic medium. Iu the
above cases, the ranges o> 537 and oy > 54°, respectively, are charac-
terized by iiregular reflection for which the above equations are invalid.
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